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Multichannel digital communications by the synchronization of globally coupled chaotic systems
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A multichannel digital communication method using the synchronization of globally coupled chaotic sys-
tems is proposed. The proposed method allows several binary messages to be transmitted simultaneously by
just one transmitted chaotic signal, provided that outputs of different units are uncorrelated. We demonstrate
the communication method on a model system consisting of Lorenz-like units. We also show how to system-
atically construct high-dimensional synchronizing units, based on the idea of cascaded systems. Furthermore,
the dynamics of the coupled chaotic systems is discussed with particular attention paid to the correlation
between the motions of different uni{s§1063-651X99)15408-4

PACS numbd(s): 05.45.Vx, 89.70+c

I. INTRODUCTION cations; it will also be difficult to imitate the key parameters.
The synchronization of high-dimensional chaotic systems
The synchronization of coupled chaotic systems was firshas already been shown to be possjild 1]. Several chaotic
shown to be possible more than ten years ago in the pioneecommunication schemes using high-dimensional chaotic sys-
ing work of Fujisaka and Yamadd]. In 1990, the seminal tems have been proposgtl—14. Recently, the implemen-
paper of Pecora and CarrgR] demonstrated that unidirec- tation of a synchronizing high-dimensional chaotic system
tionally coupled chaotic systems, so-called master-slave sysising optoelectronic systems has also been demonstrated
tems, can also be synchronized. Since their ground-breakind5,14.
work, researchers have come to realize the potential applica- In this paper, we investigate the possibility of multichan-
tion of chaotic synchronization to secure communications. nel communications based on high-dimensional chaos. In ad-
This topic has received a great deal of attention recentlydition to an increase in the security, the communication ef-
A number of communication schemes using chaos synchrdiciency can be enhanced because a large number of
nization have been proposed and some of them have beémformation signals can be transmitted simultaneously. The
implemented by electronic circuits: chaotic signal maskingcommunication schemes proposed [ib2,13 have also
[3], communications based on active-passive decompositioachieved chaos-based multichannel communications using
[4,5], communications by parameter estimat[&r6], digital  the synchronization of one-way coupled maps and globally
communications by single parameter switching in a chaoticoupled maps, respectively. These communication schemes
transmitter[7], and digital communications based on in- need to transmit two signals: one for synchronizing the re-
phase and antiphase synchronizafi8h The above investi- ceiver system to the transmitter system and the other, an
gations, however, focused mainly on low-dimensional chainformation-bearing signal. However, the proposed chaos-
otic systems. Yet, as is well known, the low-dimensionalitybased multichannel communications can be achieved by
of attractors is the origin of weaknesses for security; since &ansmitting just one signal. The scheme uses the synchroni-
low-dimensional attractor has a rather simple geometrization of globally coupled chaotic systems.
structure, its description in terms of various measures is pos- The globally coupled chaotic systems used in our commu-
sible and can be used by an intruder to find the hidden messication scheme are required to have a property that enables
sages. the output signals from different units to be uncorrelated
In fact, some of the above chaotic communicationwith each other, in order to achieve the multichannel com-
schemes have already been broken. The chaotic signal maskunications. Different parameter values are assigned to each
ing was broken by a cryptanalytic attack using the returnunit to make the globally coupled chaotic systems possess
map[9]. In the parameter switching communication schemethis property. We investigate the relationship between the
it was shown that the two attractors corresponding to the tw@arameter differences and the correlations among the output
different parameter valugge., “one” and “zero”) can be signals, and show that there are two different cases; in one
distinguished by observing some statistical quantity of thecase, the output signals rapidly become uncorrelated as the
transmitted signal and, consequently, the retrieval of the erparameter differences increase, and in the other case, the
coded binary messages is possitle]. output signals remain highly correlated even for large param-
One way to cope with the problem of weak security is toeter differences. We then discuss the reason why the two
use high-dimensional chaotic systems for the transmitter andifferent cases occur from the viewpoint of the generalized
the receiver. The use of high-dimensional chaotic systemsynchronization between the units.
increases security; these systems will make it more difficult The present paper is organized as follows. In Sec. Il we
to describe the attractor’s structure and attack the communshow the construction of the synchronizing globally coupled
systems. In Sec. Il we describe our communication scheme.
In Sec. IV we present a model system to demonstrate our
*Electronic address: kazuyuki@cslab.kecl.ntt.co.jp communication scheme and report results obtained from nu-
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merical experiments. We also discuss the correlations among dy
output signals from the viewpoint of generalized synchroni- a=PX—y—XZ,
zation. In Sec. V we describe a method to systematically
construct high-dimensional synchronizing units, and conclu- dz
sions are offered in Sec. VI. azxy_lgz, (6)
Il. CONSTRUCTION OF SYNCHRONIZING GLOBALLY with s=y for the drive system and
COUPLED SYSTEMS
!
In this section, the basic concept of synchronization by d_X: —a(x'—s),
active-passive decomposition is introduced and synchroniz- dt
ing globally coupled systems are constructed.
dy’
. . : . =Xy =x'7, Y
A. Synchronizing systems by active-passive decomposition dt
Consider an arbitrargp-dimensional autonomous dynami- dz
cal system Hzx'y'—ﬁz',
z
i F@. (1)  for the response system. Though these coupled Lorenz sys-

tems can be rigorously proven to synchronize for any initial
conditions; here, we describe a rough proof given[4i

whereze R". On n alw formally rewri n no- . . .
ereze One can always formally rewrite an autono Subtracting the first equation of Eq&) from that of Egs.

mous dynamical system of the for(t) into the nonautono-

mous system (7), the equation for the difference,=x"—x becomese,
= —oe,. Therefore, the difference, converges to zero. If
dx e,=0 is assumed, the equations describing the time evolu-
gt~ fes(b), (2)  tions of the other two differences,=y’' —y ande,=z' -z
can be written in the limit—o as
wherexe R" is the new state vector correspondingztand d
s(t) is some scalar function of time given by d_ey= —e,—Xe,
t 1
s(t)=h(x). 3 ()
de, 3
It has been shown ifi4] that for a suitable choice of the at o X& B
function h, a copy of the above nonautonomous system that
is driven by the same signa(t), The function
dx’ 1
<5 = s(), (4) Li=5(ej+¢€)) 9)

synchronizes with drive systefg) for any initial conditions ~ ¢an be used as a Lyapunov function for E8). The time
x(0) andx’(0), i.e., [x—x'|—0 for t—c. The synchroni- derivative ofL, is

zation of the pair of drive systef2) and response syste(#)

occurs if the equation describing the time evolution of the di, _ —(e§+ﬂe§)$0. (10)

differencee=x’—x, dt

de This means thag, ande, converge to zero and, therefore,
gt~ [ s)—f(x,5)=f(x+es(t)—f(xs), (5)  that the coupled Lorenz systert® and(7) synchronize for
any initial conditions. As seen in the above proof, it should

; s : e noted that the synchronization can be achieved for an
possesses a global asymptotically stable fixed point at thgrbitrary driving signab(t).

origin e=0. In general, this has to be checked by numerically
integrating Eq.(5). In some cases, however, this can be
proven by using a Lyapunov function. In the synchronizing B. Globally coupled systems

case, systenf2) tends to the origin when it is not driven,  |n this subsection, we construct synchronizing globally
s(t)=0. Therefore, the decomposition given byandh is  coupled chaotic systems whose units are the active-passive

called anactive-passive decompositi¢APD) [4]. decomposed dynamical systems coupled by the function
Example The Lorenz system; as an example for synchrogt).

nizing systems by APD, we consider the Lorenz systems We consideN dynamical systems

dx dx; .
a:_o.(x_s), H:fi(xi,s(t)), |:1,2,---N| (11)
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N wherea;, i=1,2,...N are coefficients ang:R"—R is a
)21'=fz scalar function. Binary messagbse {—1,1}, i=1,2,...N
are encoded into the coefficierdsin the manner

X1

1 Xi=fi

. X2 ., a;=aq; ’0+ bi 6, (15)
xg=ﬁ s X2 =ﬁ
h wherea; o, i=1,2,... N are constants andlis a small posi-

. . tive constant. The signal(t) is transmitted to the receiver
§ . * units of the form(13). It should be noted tha{(t) is used not
only for transmittingN binary messages simultaneously but
XN ., also for synchronizing the receiver units with the transmitter
)°CN=fN AN =fN units. Here we make a crucial assumption to the globally
/ coupled systems.

Assumption 2 Correlations between different units are
sufficiently small, i.e.,

FIG. 1. An illustration of globally coupled drive systems and

response systems.
ponse sy <1 for i#j, (16)

1 (T
(i ’¢j>|:‘ff0 @i(t) ¢;(t)dt

wherex; e R" ands(t) e R. These unit systems are globally

coupled by the function where ¢;(t) stands forg(x;(t)) andT is some time interval.
If the above assumption is satisfied, the binary messages
s(t)=h(Xq, X, . .. Xn), (12) can be recovered by the following procedure. We denote

¢(x{) by ¢/, which is calculated at the receiver systems. If

and used for the drive systems. The functigt) is used as V& calculate the correlation betwes@and ¢, we obtain the

the driving signal and the response systems are equality
N
dx/ S, ¢p)= ai o+ b;0){d;, by 1
P S, =12, N 13 (s.610=2, (a0t bio)(¢i, i) (17)

from Eq. (14). The functionse; can be replaced by, be-
We place the following assumption on each unit. cause the receiver systems synchronize with the transmitter.
Assumption 1Everyith unitx,=f;(x; ,s(t)) and its copy If knowledge aboutf; is unavailable, it is not possible to
x/ =f,(x ,s(t)) synchronize for any driving signa{t) and reproduce the functiong; at the receiver and, therefore, it is
any initial conditionsx;(0) andx/ (0), i.e., for anys(t) and not possible 'Fo recover,the messages by the fqllowmg proce-
any initial conditions|x, — x!||—0 for t—c. dure. Replacingp; by ¢; and solving Eq(17) with respect

It is evident that all of the response unit) synchronize ' Pxd, we obtain
with the corresponding drive unitd 1) via the driving signal
(12) if the above assumption is satisfied. A schematic illus- b.s 1 (s, L) — 2 a ol B bl
tration for the globally coupled drive systems and the re- K <¢,k ) K LOVF Pk
sponse systems is presented in Fig. 1.

- b ,¢>&>)- (18)
I1l. ENCODING BINARY MESSAGES i#k

In the following, we describe a communication methodThe last term in the right hand side cannot be estimated at
that makes it pOSSIbIe to transmit several blnary messagqfe receiver Systems since the messa@eare unknown.

simultaneously by just one transmitted signal, by utilizingBecause of assumption 2, however, the last term may be
the synchronizing globally coupled chaotic systems conneglected and the equality

structed in the previous section.

As the transmitter system, we use the globally coupled
systemg(11) constructed in the previous section, b= (( S, ) — E a o P ,¢k)) (19
(kb
! =f.(x;,s(t)), i=12,...N, approximately holds.
dt If all of the cross correlations are equal to zero, terms

excepti =k in the sum on the right hand side of E49) can
with a particular choice oh of the form also be neglected. However, as they are small but not zero,
we retain these terms to estimate the original messages as
accurately as possible. The right hand side) of Eq. (19)
s(t) = E a b, (14) can be (;alculated at the receiver systems and the binary mes-
sageb, is recovered as
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5 1 if rhs >0, ) *
““1-1 ifrhs<o. 20
A sufficient condition for recovering the messages with-
out error is given by s .
(di b *
— <1 for k=1,2,...N. 21
7 [Pk, b (@

In fact, Eq.(18) is rewritten as

25 30 35 40 45 50

t
bi<¢‘, I¢I,<>
bed| 1+ ————= FIG. 2. Transmitted signai(t).
7k by( oy, bi)
k\ Pk » Pk
1 ! N ! ! dxl’ !
R <S1¢k>_i:21 aio b be) |- (22 FTERI S I OF
It can be easily seen that the total sum inside the parentheses dy/ , , .
on the left hand side is positive when conditi#1) is sat- qr PN TR Y (29
isfied. Therefore, the sign of the right hand side, which is
estimated at the receiver systems, is equal to thbf ofThis ,
means that the original binary messages are recovered with- dz iy ,
out error at the receiver. TR —Biz; .
IV. EXAMPLE OF A COMMUNICATION SYSTEM The synchronization of every pair of corresponding units can

o . be easily proven in the same way as describe in Sec. Il. As

We present a model system consisting of Lorenz-like, assumption 2, we will show by numerical integration that
units, able to satisfy assumptions 1 and 2, to demonstrate thecan pe satisfied when the parameter differences are intro-
communication method proposed in the previous section. Wgceqd appropriately. Besides assumptions 1 and 2, it is also
will show results obtained from numerical experiments forrequired for the transmitter dynamical system that its attrac-

the transmission of messages on the model. It is cruciallyy, pe pounded. This is guaranteed for the present model
important for our communication method to satisfy assumpyEgs. (23) and (24)] by the following proposition.

tion 2. Therefore, we will also investigate the relationship Proposition 1 Let h:R?V—R be a continuous function of
between the parameter differences and the cross correlatiog)i o WNAZe e Zn ES=N(YL, - YNoZ1s - - - Zy) then

of the output signals from different units. there is a regiorD CR3N such that every trajectory of the
coupled dynamical systeli23) entersD and never leaves it
A. Globally coupled Lorenz-like systems thereafter(see Appendix A

We couple theN Lorenz-like units

q B. Numerical Experiments
d—);'=—ai(xi—ys), We show the results of numerical experiments on the
transmitter-receiver systemiggs.(23)—(25)] to demonstrate
our communication method. Numerical integration of the
%: LV — X7 23) equations was carried out by the fourth-order Runge-Kutta
dt P YT vz scheme. We sét =2 for simplicity of the analysi$ given in
the next subsectignThe other parameter values are as fol-
dz| lows: ’}/:20, ﬂ1232:8/3, (71:10.0, 0'2:14.0, P1
qr - vxYiT Bizi =30.0, p,=26.0, u;=1.0, u,=0.75, v,=1.0, v,=1.25,
a; p=a,=1.0, andé=0.1. The time interval for transmit-
- : : ting a single set of binary messages is seTasb.
with the coupling function The signals(t) is plotted against time in Fig. 2 and it
N appears to be chaotic. The encoded binary message se-
S=E (a o+ b;d)y; , (24) quences are sh_own in Fig(a3, where the horizontal a_xis
=1 represents the time, each row corresponds to each channel
=1 or 2, and the filled and open cells represent the binary
wherey, i, pi, ui, vi, andg; are positive parameters for messages 1 and— 1, respectively. The binary message se-
the transmitter. To make the dynamics of different units un-quences recovered at the receiver are shown in Kly. 8
correlated, we assign different parameter values to each unitan be seen that the first pair of bits in the sequences is not
The units in the receiver are recovered correctly because the synchronization is still not
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(b) o ,
0 1 2 3 4 5
FIG. 3. Numerical simulation of a communication method with A
two channels(a) Original binary messagesh) Recovered binary
messages. FIG. 4. Cross correlation versus parameter(i) solid line, (ii)

. dashed line, andii) dashed-dotted line.
achieved. However, the other binary messages are perfectly

recovered. systemsx; andx, are said to synchronize in a generalized

sense if there exists an invertible mapR"— R", a manifold
C. Correlation and parameter differences M ={(x1,%2)[xo=(x1)}, and a subseBC R*" with MCB,
In our communication method, assumption 2, which re_SUCh that all of the trajeCtOfieS with initial conditions in basin
quires the dynamics of different units to be uncorrelated, id3 approachM ast—o.
crucially important. Therefore, we investigate how the cross Roughly speaking, GS is said to occur if one state vari-
correlation decreases as the parameter differences increasable is uniquely determined by the other via the functional
We consider coupled Lorenz-like systerf28) of N=2  relationx,= ¢(x;) after the transient motions. The following
with a; p=a,0=1.0 and no encoded messages, isey; proposition enables us to numerically examine whether such

+Y,. The normalized cross correlation is defined by a functional relation exists between the state varialdes
=(X1,Y1,21) andX,=(X,,Y2,2,), under the assumption that
(Y1,Y2)  is continuously differentiableg and e CY).

C= <y1'yl><y2,y2>’ (26) Proposition 2 Let X1, Xp € R" be state variables of a pair
of dynamical systems; =g;(X,X») and$<2= 02(X1,X5). The
where the time average in each correlation is taken over thgttractor 0 of these coupled systems is assumed to be
periodT=120. We fix the parameters of the first unit exceptbounded. If there is a function from thg space to thex,
y as §,=8/3, 0,=10.0, p;=30.0, u;=1.0, andv,;=1.0.  space, such that,=(x;) for any points onQ with
Different parameter values are assigned to the second agC?, then the correlation dimension 6¥ is equal to that of
cording to the following three case§) four parameters are its projectionII,({2) to thex,; space(see Appendix B
different (o,=01+A, po=p1—A, pr=p;—0.0623, v, This proposition implies that there is no function frofp
=v1+0.062%\) and the coupling parameter 8=2.0, (i)  to X, [X,=¢(X;)] with e C%, if Q andII,(Q) do not
two parameters are differentr¢=o0,+A, p,=p;—A) and  have the same correlation dimensions, whefe= R®x R?)
y=0.5, and(iii) only one parameter is differenfof=p;  andII,(Q)(CR®) stand for the attractor of the whole sys-
—A) and y=2.0, whereA is a parameter that controls the tem and its projection to the phase space of the first unit,
extent of the parameter differences. respectively.

Figure 4 displays the normalized cross correlati©omn We measure the correlation dimensiols, () and
plotted as a function ofA for the above three cases. The D,(I1,(Q)). Figure 5 display®D,(Q) and D,(I1,(Q)) for
cross correlation rapidly decreases in cag@sA increases. cases(i)—(iii) as a function ofA, where the thick and thin
In contrast to this, the two units are highly correlated @3¢l lines refer toD,(Q2) andD,(I1,(Q)), respectively; the line
remains at unity or only slightly decreases with increasing type distinguishes the three casegiasolid line, (ii) dashed
in the other case§i) and (iii). line, and (i) dashed-dotted line. Some sharp decreases of

What is a difference in the dynamics between the highlythe correlation dimensions correspond to the windows where
correlating cases and the uncorrelating case? We now prgtable periodic attractors emerge.
ceed to investigate what kind of phenomenon causes the Apart from the window, bothD,(Q) and D,(I1,(€))
highly correlated motions. It is conceivable that generalizedncrease ag\ increases in casg). They are apparently dif-
synchronizatioGS) occurs between the two units. GS was ferent and the difference also increases. In d@$eD,()
studied for unidirectionally couplednaster-slavesystems sjowly increases and saturates at about 2.5. The apparent
in [17-19 and also for mutually coupled systems, like our difference betweerD,(Q)) and D,(I1,(Q)) can also be
systems, if20]. A definition of GS can be given as follows. found in this case. These results indicate that, for céises

Definition Let X1,Xp € R" be state v_ariables of a pair of and(ii), function X,=(X,) does not exist irC*. (A func-
dynamical systems;=g;(X;,X5) and X,=g,(X;,X,). The tion that is not continuously differentiable might exist; we
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FIG. 5. Correlation dimensions &1 andII,(€)) plotted versus
parameterA. Each thick line refers t®,({)) and each thin line
refers toD,(I1,(£2)). The line type distinguishes three casés:
solid line, (i) dashed line, andii) dashed-dotted line.

cannot deny this possibility.In both of the two cases,
D,(IT,(Q)) was also different fronD,(2). This indicates
that a function in the opposite directiofy = ' (X,) does not
exist in CL.

In contrast to the previous cases, in cdsg, () and
IT,(Q) have the same correlation dimensions for aky

This suggests the existence of a continuously differentiable

and invertible map. In fact, we can find the continuously
differentiable  and invertible map ¢:(X1,Y1,21)
—(X1,(p2/p1)Y1.(p2/p1)z1) In this case: the second unit
becomes identical to the first under the transformatign

=(X4). This GS causes nondecreasing in the cross corre-

lation asA increases in cas@ii).
It is not still clear what kind of phenomenon occurs and
causes the highly correlated motions in cdsg On this

point, it is conceivable that there persists a rough correspon-

dence between the state variablgsand X, as the parameter
differences increase,
spondence.
Consider points X;,X,) on the attractof). As a func-
tional relation does not exist, at least @, if one state
variable, X; or X,, is fixed, the other state variable is not

uniquely determined; i.e., for a fixed state variaﬁle (or
’Xz), the set le{X2|X1:’>~(1,(X1 ,Xz) e Q} (Or W2
={X1|X,=X,,(X1,X,) € Q}) contains several points\;
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FIG. 6. Paramete® plotted versud\: (i) solid line, (ii) dashed
line, and(iii) dashed-dotted line.

averaged radii, andr, may be useful to examine whether
there persists a rough correspondence betwéeand X,.
However, it is impossible to numerically calculate them.

Therefore, we define parameters similart{oandr, as fol-
lows. Let {(X{?,x{")}, i=1,2,...m be a time series ob-
tained from the trajectory after the transient behavior. Using
this time series, we define the paramet®rsand®, as

m
3, He= X0 X{UDIXEE- O]

2’“: =

i=1

®1,2:

m

E 1

H(e=[IX25= X34

(27)
whereH is the Heaviside function
0 (x<0),
9711 (x=0), 28

instead of an exact one-to-one corre-

€ is a small positive constant, ar(d(gy)l)i is the average
defined by

m

> H

j=

_||X(J)_X(|)2“)X(J)

(XPhi= (29

= XP- X))

and W, consist of a single point when GS occurs. We can

find a ballU, (U,) that coveran, (W,) since(} is bounded.
Let rl(Xl) [r2(X2)] be the infimum of the radius of such a
ball andrl (r2) be its average taken with respect)(g(xz)
over the attractof). The averaged radnl andr, can be

regarded as parameters that express to what degree the co

respondence betweex; and X, is close to a one-to-one
correspondence; the correspondence betwgeand X, be-

comes close to one-to-one whepandrz become small, and
there is a one-to-one correspondence wherr,=0.

terms of predlctablhtyrl (r ») gives an average error in pre-
dicting X, (X;) from the knowledge o¥; (X,) only. The

We used the norm|Xy||=|x|+]|y«|+|z for the conve-
nience of computation. Parametdds and ®, measure to
what precision a state variable can be determined when the
other state variable is determined within the er¢or

We calculated the average=(0,+0,)/2 as a function
¥ A for cases(i)—(iii). Figure 6 displays the results. The
quantity ® steeply increases with increasing except the
point of the periodic window iri), indicating that the cor-
respondence betweexy and X, comes to break down. In
contrast,® is almost constant ifiii ). This is consistent with
the existence of GS. The result for ca@e is interesting.
The quantity® gradually increases ds increases up to 2.5,



1654 K. YOSHIMURA PRE 60

and then it saturates at a small value. This saturatio® of i th unit system
means that, even for a large, the correspondence between i !
X, andX, persists to a certain degree. We therefore say that i
the systems are in@ear generalized synchronizatigNG9) Sile _p|Su e o (S2 Sk |, | X
. Xio=Fio Xir=Ji bl xZK— K

state when there exists such a rough correspondence between
the state variables. It may be concluded that NGS prevents
decreases of the cross correlation in cage

As shown in the above analysis, GS or NGS can occur in  FIG. 7. An illustration of a scheme for constructing high-
coupled systems used for transmitters. Each of them cadimensional unit systems.
make the dynamics of different units highly correlated.
Therefore, GS and NGS are undesirable for the proposed si=hij(x:_y), j=1,...K. (34)
communication method and should be avoided. We can N o

avoid GS and NGS if we introduce sufficiently large param-\yie assume that every pair of systagpand systenx/; sat-
. . . 1

eter cﬁfferences according to an appropriate manner, €.Gyfioo assumption 1, i.elx; — x}|—0 for t—o if SijJ=Si'--

case(i), and subsequently our communication method Can o it is easy to see that all Jof the syst ’ssynchroni]ze

work well monstrat numerical experiments. In this . )
N ell as demonstrated by numerical experiments Swith the corresponding systermsg one after another. There-

case, it was observed that the attractor of the coupled sy Sre. our communication method can be apolied provided
tems recovers the high dimensionality and the correlatio ' PP P

becomes small. Apart from its relevancy in the communica-that assumption 2 is satisfied. Messages are encoded into the

tion method, NGS may be an interesting phenomenon. I?oi‘flmentsai aslwell. ider th ded ¢
may be worth studying whether NGS occurs in chaotic sys- S an exampie, we consider the cascaded systems
tems with other types of couplings, e.g., diffusive couplings.

dXi
qi - oixi—s),
V. CASCADED SYSTEMS
It is desirable to use a high-dimensional dynamical system dy;
for each unit in order to make the attacking more difficult. I:pixi_MiYi_ViXiZi ' (39
Moreover, the use of high-dimensional unit systems can be
expected to lead to smaller cross correlations between differ- dz
ent units, avoiding GS and NGS and, therefore, makes it _Z|:ViXiYi_,8izi1
possible to transmit a larger number of information signals dt
simultaneously. A method that enables us to systematically
construct a high-dimensional synchronizing system usingind
low-dimensional building blocks has been proposef4i5];
the constructed high-dimensional system is cattadcaded ﬂ: U= KVt S
systems dt PRI
Connecting the building blocks in series, we can construct (36)
theith units of the form dv; .
7 T KU vy,
dx; dt
—=fi; (% ,si(t)), i=12,...N, j=0,1,...K,
de U wheres ands;; are defined by
(30)
N
where s=2, (aigtbio)vi, (37)
N i=1
S10= - :SNO:SZZ‘l a; p(Xik) (3D and
ands; (j=1,...K) is a function ofx;;_; given by Si1=Yi Sin(wyiYi) +Z; Sin(w;z;) (38)
s;;=hij(x;j1)- (32) andoyi, pi, Mi, ¥i, Bi, Ki, 7, 0yi, andw,; are positive

parameters. The cascaded systdB® and (36) and their
A configuration of theith unit is illustrated in Fig. 7. These COPi€s can be shown to synchronize by using Lyapunov
N units are coupled by the functiosand form the drive ~functions. Synchronization of the first syste86) with its
system. The signas is transmitted to a response systemCOPY is proven in the same way as described in Sec. II.

which consists of the copies of these units Therefore, we can assunsg =sj; . If s;;=s{; is assumed,
the equations governing the differenags=u; —u; ande,;
dx; . =v{—v; are
s (), (33
deui
=€y~ Ki€yi,

wheres/,=s and dt
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FIG. 8. Transmitted signai(t). :,

3

%:Kieui_nievi(vi2+vivi,+vi,2)- (39 f

(b)

Using the Lyapunov function
L FIG. 9. Numerical simulation of a communication method with
eight channels(a) Original binary message#h) Recovered binar
Lo=5(€f+ed, (40 proeagaa e Cramal binary messagee) v
we obtain idea of cascaded systems, we also described a method that
systematically constructs a high-dimensional synchronizing
unit system. The use of high-dimensional unit systems may
make communications more secure. In addition, it has been
shown by numerical experiments on a model system that the
This shows that the second systé®6) and its copy synchro-  simultaneous transmission of a larger number of binary mes-
nize with each other. It can also be shown that there exists $ages is possible by using high-dimensional unit systems
bounded region irR°N into which any trajectory eventually Since the cross correlations between different units become
enters; we do not describe the proof here. smaller.

We show results obtained from numerical experiments on We investigated the dynamics of the coupled Lorenz-like
the cascaded systenid5) and (36) with a sizeN=8. For  Systems with a siz&l=2, focusing our attention on the cor-
eachi, the parameter values are randomly chosen in the foltelation of the dynamics of the two different units. It was
lowing ranges:o; €[10,20], p;[30,60, u;[0.25,1], v shown that GS or NGS occurs under some parameter condi-
e[1,2], Bie[83,17/3, «ie[3,12], 7€[0.21], oy, tions and also that they lead to highly correlated motions,
€[0.5,4], w,;e[0.25,1], anda; oe[0.5,1]. The parameted which are undesirable for the present communication
is set to 0.1 and the time intervalfor transmitting a single Method. However, it was also shown that GS and NGS can
set of binary messages is set Bs 20. The signais(t) is  be avoided under appropriate choices of the parameter values
p|0tted against time in F|g 8 and it is apparenﬂy chaotic. and that our communication method can work well in turn.
The encoded binary message sequences are shown in Flgthls case, it was observed that the attractor of the Coupled
9(a) and the binary message sequences recovered at the f@stems recovers the high dimensionality and the correlation
ceiver are shown in Fig.(B). The first column of the mes- becomes small.
sage sequences is not recovered correctly because the syn-
chronization is still not achieved. The other binary messages ACKNOWLEDGMENT
are perfectly recovered. This numerical result shows that the
simultaneous transmission of a large number of binary mes- The author would like to thank K. Arai for reading the
sages is possible by using high-dimensional unit systems. manuscript and making a number of helpful suggestions.

dL,
dat

2

1
_eui_Ee\zli{vi2+vi,2+(Vi+Vi,)2}$o. (41)

VI. CONCLUSIONS APPENDIX A: PROOF OF PROPOSITION 1

A multichannel digital communication method using the  Proof. Consider the Lyapunov function
synchronization of globally coupled chaotic systems has

been proposed. One of the advantages of the method is that N 4 N2
several binary messages can be transmitted simultaneously L=> = yi2+(zi_ &) ] (A1)
by just one transmitted signal. We presented a model system =12 Vi

consisting of Lorenz-like units and demonstrated our com-
munication method by numerical experiments. Based on th&he time derivative ot is
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dL_ o 2 pi\?]  Bi[pi\? {4 x)}, i=1,2,... m be a time series obtained from the
azgl —\miYi Bl zi— 2_1/, + 4 ;I : trajectory. The correlation dimension 6f is defined byf21]
(A2)
_logC(e)
We define the regiom,={(x,y,2)|L=— ey, e,>0}CR®N, DZ(Q)_BEI) loge '’ (B1)
where  x=(Xg,...Xn),  Y=(Y1,.-..¥n), and z
=(24,...,2y). The regiorDg is bounded with respect to the

y andz coordinates from Eq(A2). Therefore, there exists the where the correlation integrdl(e) is defined by

supremum ofL in Dy and we letC be the supremum. We Lom
define the regionD;={(x,y,2)|L<C+¢€;,e,>0}CRN, Cle)= lim — He— ll(x® x@y— (x() 0@
which is bounded with respect to theand z coordinates (€) m[nm 2 i,jEzl (e=lOa ) =0 D,

from Eqg. (Al). Because of this definition, it holds that (B2)

DoCD,, andL=< — ¢y outside ofD,. If an arbitrary trajec-

tory I'(t) starts from a point outside d@,, then the value of whereH is the Heaviside function. The correlation dimen-
L associated with points on the trajectory must decrease &on of I1,({2) is defined in the same way through the cor-
time goes by and’(t) will enter D; within a finite timeT,. relation integralC,(e€) calculated from the time seriéx(l')}.
Furthermore, all of the trajectories pass inwards through the The inequalityD,(I1,(Q))<D,(Q) is trivial. Therefore

boundarydD, sinceL< — e, on dD;. Therefore, the trajec- W€ prove the oppositeD,(I1,(£2))=D(€2). Consider an

tory I'(t) once enterindd, will stay insideD; for t=T,. arbitrary pair such thatx{" —x{||<e. For such a pair, we
There exists a constantM such that |s|  have the inequality
=|h(y1,....Yn:Z1, - - ..Zy)|<M in D; becausé is a con- o o _ _ _ _
tinuous function ofy andz and is therefore bounded . If I(xE” ,x8) = (P xE) [[= [, g (x) = 7, (x|
we formally integrate the first equation of E¢23), then we i i i -
have <||x{ = xP[| + [ p(x) = p(xP).
o (i v e Since () is assumed to be bounded amicc C?, there is a
(D =x ai(t=T) ot . . Ch
X()=xi(Ty)e +Lle " Tyois(n)dr constanK such that| y(x{") — y(x{") | <K][x{) —x{||. Then

(A3)  we have

H < = 1 T . . . . ~
Using the fact thats|<Mfor t=T, we have the inequality 1 x9) — (x) x| < (1+K) e==. (B3)
t
—o(t—-T ) —oj(t—7 . .
Xi(D]=<[xi(Ty)|e” 1T+ yo M JTle =Idr From the inequalityB3), we have

<|x(Ty)le" "W+ yM. (A4) logC,(e)<logC(%). (B4)

Since the first term on the right hand side decreases and goes o ) o
to zero as time goes by, there exidtg(>T,) such that for If we divide both sides by log(<0) and take the limite

all i, |[x(t)|<1+yM for t=T, If we define D —0,we obtain
=D1N{(x,Y,2]|xi|<1+yM,i=1,2,...N}, then it holds 5 B
thatI'(t) e D for t=T,. | _ logCy(e) . logC(e) . logC(e)
lim = =lim —. (BY)
o loge co loge ~ o loge

APPENDIX B: PROOF OF PROPOSITION 2

Proof. For simplicity, suppose the nornix|=(|x,|/9  This shows thatD,(IT,({2))=D,(Q2). Hence, we have

+. - +|x ]9 in R¥ whereq is a positive integer. Let D,(I1,(Q))=D,(Q). [ |
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