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Multichannel digital communications by the synchronization of globally coupled chaotic systems

K. Yoshimura*
NTT Communication Science Laboratories 2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

~Received 11 November 1998!

A multichannel digital communication method using the synchronization of globally coupled chaotic sys-
tems is proposed. The proposed method allows several binary messages to be transmitted simultaneously by
just one transmitted chaotic signal, provided that outputs of different units are uncorrelated. We demonstrate
the communication method on a model system consisting of Lorenz-like units. We also show how to system-
atically construct high-dimensional synchronizing units, based on the idea of cascaded systems. Furthermore,
the dynamics of the coupled chaotic systems is discussed with particular attention paid to the correlation
between the motions of different units.@S1063-651X~99!15408-4#

PACS number~s!: 05.45.Vx, 89.70.1c
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I. INTRODUCTION

The synchronization of coupled chaotic systems was
shown to be possible more than ten years ago in the pion
ing work of Fujisaka and Yamada@1#. In 1990, the semina
paper of Pecora and Carroll@2# demonstrated that unidirec
tionally coupled chaotic systems, so-called master-slave
tems, can also be synchronized. Since their ground-brea
work, researchers have come to realize the potential app
tion of chaotic synchronization to secure communication

This topic has received a great deal of attention recen
A number of communication schemes using chaos sync
nization have been proposed and some of them have
implemented by electronic circuits: chaotic signal mask
@3#, communications based on active-passive decompos
@4,5#, communications by parameter estimation@5,6#, digital
communications by single parameter switching in a cha
transmitter @7#, and digital communications based on i
phase and antiphase synchronization@8#. The above investi-
gations, however, focused mainly on low-dimensional c
otic systems. Yet, as is well known, the low-dimensional
of attractors is the origin of weaknesses for security; sinc
low-dimensional attractor has a rather simple geome
structure, its description in terms of various measures is p
sible and can be used by an intruder to find the hidden m
sages.

In fact, some of the above chaotic communicati
schemes have already been broken. The chaotic signal m
ing was broken by a cryptanalytic attack using the ret
map @9#. In the parameter switching communication sche
it was shown that the two attractors corresponding to the
different parameter values~i.e., ‘‘one’’ and ‘‘zero’’! can be
distinguished by observing some statistical quantity of
transmitted signal and, consequently, the retrieval of the
coded binary messages is possible@10#.

One way to cope with the problem of weak security is
use high-dimensional chaotic systems for the transmitter
the receiver. The use of high-dimensional chaotic syste
increases security; these systems will make it more diffic
to describe the attractor’s structure and attack the comm
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cations; it will also be difficult to imitate the key parameter
The synchronization of high-dimensional chaotic syste
has already been shown to be possible@4,11#. Several chaotic
communication schemes using high-dimensional chaotic
tems have been proposed@12–14#. Recently, the implemen
tation of a synchronizing high-dimensional chaotic syst
using optoelectronic systems has also been demonstr
@15,16#.

In this paper, we investigate the possibility of multicha
nel communications based on high-dimensional chaos. In
dition to an increase in the security, the communication
ficiency can be enhanced because a large numbe
information signals can be transmitted simultaneously. T
communication schemes proposed in@12,13# have also
achieved chaos-based multichannel communications u
the synchronization of one-way coupled maps and glob
coupled maps, respectively. These communication sche
need to transmit two signals: one for synchronizing the
ceiver system to the transmitter system and the other
information-bearing signal. However, the proposed cha
based multichannel communications can be achieved
transmitting just one signal. The scheme uses the synchr
zation of globally coupled chaotic systems.

The globally coupled chaotic systems used in our comm
nication scheme are required to have a property that ena
the output signals from different units to be uncorrelat
with each other, in order to achieve the multichannel co
munications. Different parameter values are assigned to e
unit to make the globally coupled chaotic systems poss
this property. We investigate the relationship between
parameter differences and the correlations among the ou
signals, and show that there are two different cases; in
case, the output signals rapidly become uncorrelated as
parameter differences increase, and in the other case
output signals remain highly correlated even for large para
eter differences. We then discuss the reason why the
different cases occur from the viewpoint of the generaliz
synchronization between the units.

The present paper is organized as follows. In Sec. II
show the construction of the synchronizing globally coup
systems. In Sec. III we describe our communication sche
In Sec. IV we present a model system to demonstrate
communication scheme and report results obtained from
1648 © 1999 The American Physical Society
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merical experiments. We also discuss the correlations am
output signals from the viewpoint of generalized synchro
zation. In Sec. V we describe a method to systematic
construct high-dimensional synchronizing units, and conc
sions are offered in Sec. VI.

II. CONSTRUCTION OF SYNCHRONIZING GLOBALLY
COUPLED SYSTEMS

In this section, the basic concept of synchronization
active-passive decomposition is introduced and synchro
ing globally coupled systems are constructed.

A. Synchronizing systems by active-passive decomposition

Consider an arbitraryn-dimensional autonomous dynam
cal system

dz

dt
5F~z!, ~1!

where zPRn. One can always formally rewrite an auton
mous dynamical system of the form~1! into the nonautono-
mous system

dx

dt
5f„x,s~ t !…, ~2!

wherexPRn is the new state vector corresponding toz and
s(t) is some scalar function of time given by

s~ t !5h~x!. ~3!

It has been shown in@4# that for a suitable choice of th
function h, a copy of the above nonautonomous system t
is driven by the same signals(t),

dx8

dt
5f„x8,s~ t !…, ~4!

synchronizes with drive system~2! for any initial conditions
x(0) andx8(0), i.e., ix2x8i˜0 for t˜`. The synchroni-
zation of the pair of drive system~2! and response system~4!
occurs if the equation describing the time evolution of t
differencee5x82x,

de

dt
5f~x8,s!2f~x,s!5f„x1e,s~ t !…2f~x,s!, ~5!

possesses a global asymptotically stable fixed point at
origin e50. In general, this has to be checked by numerica
integrating Eq.~5!. In some cases, however, this can
proven by using a Lyapunov function. In the synchronizi
case, system~2! tends to the origin when it is not driven
s(t)50. Therefore, the decomposition given byf and h is
called anactive-passive decomposition~APD! @4#.

Example. The Lorenz system; as an example for synch
nizing systems by APD, we consider the Lorenz systems

dx

dt
52s~x2s!,
ng
-
ly
-

y
z-

at

e
y

-

dy

dt
5rx2y2xz,

dz

dt
5xy2bz, ~6!

with s5y for the drive system and

dx8

dt
52s~x82s!,

dy8

dt
5rx82y82x8z8, ~7!

dz8

dt
5x8y82bz8,

for the response system. Though these coupled Lorenz
tems can be rigorously proven to synchronize for any ini
conditions; here, we describe a rough proof given in@4#.
Subtracting the first equation of Eqs.~6! from that of Eqs.
~7!, the equation for the differenceex5x82x becomesėx
52sex . Therefore, the differenceex converges to zero. If
ex50 is assumed, the equations describing the time ev
tions of the other two differencesey5y82y andez5z82z
can be written in the limitt˜` as

dey

dt
52ey2xez ,

~8!
dez

dt
5xey2bez .

The function

L15
1

2
~ey

21ez
2! ~9!

can be used as a Lyapunov function for Eq.~8!. The time
derivative ofL1 is

dL1

dt
52~ey

21bez
2!<0. ~10!

This means thatey and ez converge to zero and, therefor
that the coupled Lorenz systems~6! and ~7! synchronize for
any initial conditions. As seen in the above proof, it shou
be noted that the synchronization can be achieved for
arbitrary driving signals(t).

B. Globally coupled systems

In this subsection, we construct synchronizing globa
coupled chaotic systems whose units are the active-pas
decomposed dynamical systems coupled by the func
s(t).

We considerN dynamical systems

dxi

dt
5f i„xi ,s~ t !…, i 51,2, . . . ,N, ~11!
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wherexiPRn ands(t)PR. These unit systems are global
coupled by the function

s~ t !5h~x1 ,x2 , . . . ,xN!, ~12!

and used for the drive systems. The functions(t) is used as
the driving signal and the response systems are

dxi8

dt
5f i„xi8 ,s~ t !…, i 51,2, . . . ,N. ~13!

We place the following assumption on each unit.
Assumption 1. Every i th unit ẋi5f i„xi ,s(t)… and its copy

ẋi85f i„xi8 ,s(t)… synchronize for any driving signals(t) and
any initial conditionsxi(0) andxi8(0), i.e., for anys(t) and
any initial conditions,ixi2xi8i˜0 for t˜`.

It is evident that all of the response units~13! synchronize
with the corresponding drive units~11! via the driving signal
~12! if the above assumption is satisfied. A schematic illu
tration for the globally coupled drive systems and the
sponse systems is presented in Fig. 1.

III. ENCODING BINARY MESSAGES

In the following, we describe a communication meth
that makes it possible to transmit several binary messa
simultaneously by just one transmitted signal, by utilizi
the synchronizing globally coupled chaotic systems c
structed in the previous section.

As the transmitter system, we use the globally coup
systems~11! constructed in the previous section,

dxi

dt
5f i„xi ,s~ t !…, i 51,2, . . . ,N,

with a particular choice ofh of the form

s~ t !5(
i 51

N

aif~xi !, ~14!

FIG. 1. An illustration of globally coupled drive systems an
response systems.
-
-

es

-

d

whereai , i 51,2, . . . ,N are coefficients andf:Rn
˜R is a

scalar function. Binary messagesbiP$21,1%, i 51,2, . . . ,N
are encoded into the coefficientsai in the manner

ai5ai ,01bid, ~15!

whereai ,0 , i 51,2, . . . ,N are constants andd is a small posi-
tive constant. The signals(t) is transmitted to the receive
units of the form~13!. It should be noted thats(t) is used not
only for transmittingN binary messages simultaneously b
also for synchronizing the receiver units with the transmit
units. Here we make a crucial assumption to the globa
coupled systems.

Assumption 2. Correlations between different units a
sufficiently small, i.e.,

u^f i ,f j&u5U1TE0

T

f i~ t !f j~ t !dtU!1 for iÞ j , ~16!

wheref i(t) stands forf„xi(t)… andT is some time interval.
If the above assumption is satisfied, the binary messa

can be recovered by the following procedure. We den
f(xi8) by f i8 , which is calculated at the receiver systems.
we calculate the correlation betweens andfk8 we obtain the
equality

^s,fk8&5(
i 51

N

~ai ,01bid!^f i ,fk8& ~17!

from Eq. ~14!. The functionsf i can be replaced byf i8 be-
cause the receiver systems synchronize with the transm
If knowledge aboutf i is unavailable, it is not possible to
reproduce the functionsf i at the receiver and, therefore, it
not possible to recover the messages by the following pro
dure. Replacingf i by f i8 and solving Eq.~17! with respect
to bkd, we obtain

bkd5
1

^fk8 ,fk8&
S ^s,fk8&2(

i 51

N

ai ,0̂ f i8 ,fk8&

2(
iÞk

bid^f i8 ,fk8& D . ~18!

The last term in the right hand side cannot be estimate
the receiver systems since the messagesbi are unknown.
Because of assumption 2, however, the last term may
neglected and the equality

bkd.
1

^fk8 ,fk8&
S ^s,fk8&2(

i 51

N

ai ,0̂ f i8 ,fk8& D ~19!

approximately holds.
If all of the cross correlations are equal to zero, ter

excepti 5k in the sum on the right hand side of Eq.~19! can
also be neglected. However, as they are small but not z
we retain these terms to estimate the original message
accurately as possible. The right hand side~rhs! of Eq. ~19!
can be calculated at the receiver systems and the binary
sagebk is recovered as
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bk5H 1 if rhs .0,

21 if rhs ,0.
~20!

A sufficient condition for recovering the messages wi
out error is given by

(
iÞk

U ^f i ,fk&

^fk ,fk&
U,1 for k51,2, . . . ,N. ~21!

In fact, Eq.~18! is rewritten as

bkdS 11(
iÞk

bi^f i8 ,fk8&

bk^fk8 ,fk8&
D

5
1

^fk8 ,fk8&
S ^s,fk8&2(

i 51

N

ai ,0̂ f i8 ,fk8& D . ~22!

It can be easily seen that the total sum inside the parenth
on the left hand side is positive when condition~21! is sat-
isfied. Therefore, the sign of the right hand side, which
estimated at the receiver systems, is equal to that ofbk . This
means that the original binary messages are recovered w
out error at the receiver.

IV. EXAMPLE OF A COMMUNICATION SYSTEM

We present a model system consisting of Lorenz-l
units, able to satisfy assumptions 1 and 2, to demonstrate
communication method proposed in the previous section.
will show results obtained from numerical experiments
the transmission of messages on the model. It is cruci
important for our communication method to satisfy assum
tion 2. Therefore, we will also investigate the relationsh
between the parameter differences and the cross correla
of the output signals from different units.

A. Globally coupled Lorenz-like systems

We couple theN Lorenz-like units

dxi

dt
52s i~xi2gs!,

dyi

dt
5r ixi2m i yi2n ixizi , ~23!

dzi

dt
5n ixiyi2b izi ,

with the coupling function

s5(
i 51

N

~ai ,01bid!yi , ~24!

whereg, s i , r i , m i , n i , andb i are positive parameters fo
the transmitter. To make the dynamics of different units u
correlated, we assign different parameter values to each
The units in the receiver are
-
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dxi8

dt
52s i~xi82gs!,

dyi8

dt
5r ixi82m i yi82n ixi8zi8 , ~25!

dzi8

dt
5n ixi8yi82b izi8 .

The synchronization of every pair of corresponding units c
be easily proven in the same way as describe in Sec. II.
for assumption 2, we will show by numerical integration th
it can be satisfied when the parameter differences are in
duced appropriately. Besides assumptions 1 and 2, it is
required for the transmitter dynamical system that its attr
tor be bounded. This is guaranteed for the present mo
@Eqs.~23! and ~24!# by the following proposition.

Proposition 1. Let h:R2N
˜R be a continuous function o

y1 , . . . ,yN ,z1 , . . . ,zN . If s5h(y1 , . . . ,yN ,z1 , . . . ,zN) then
there is a regionD,R3N such that every trajectory of th
coupled dynamical system~23! entersD and never leaves i
thereafter~see Appendix A!.

B. Numerical Experiments

We show the results of numerical experiments on
transmitter-receiver systems@Eqs.~23!–~25!# to demonstrate
our communication method. Numerical integration of t
equations was carried out by the fourth-order Runge-Ku
scheme. We setN52 for simplicity of the analysis~ given in
the next subsection!. The other parameter values are as f
lows: g52.0, b15b258/3, s1510.0, s2514.0, r1
530.0, r2526.0, m151.0, m250.75, n151.0, n251.25,
a1,05a2,051.0, andd50.1. The time intervalT for transmit-
ting a single set of binary messages is set asT55.

The signals(t) is plotted against timet in Fig. 2 and it
appears to be chaotic. The encoded binary message
quences are shown in Fig. 3~a!, where the horizontal axis
represents the time, each row corresponds to each chani
51 or 2, and the filled and open cells represent the bin
messages11 and21, respectively. The binary message s
quences recovered at the receiver are shown in Fig. 3~b!. It
can be seen that the first pair of bits in the sequences is
recovered correctly because the synchronization is still

FIG. 2. Transmitted signals(t).
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achieved. However, the other binary messages are perf
recovered.

C. Correlation and parameter differences

In our communication method, assumption 2, which
quires the dynamics of different units to be uncorrelated
crucially important. Therefore, we investigate how the cro
correlation decreases as the parameter differences incre

We consider coupled Lorenz-like systems~23! of N52
with a1,05a2,051.0 and no encoded messages, i.e.,s5y1
1y2. The normalized cross correlation is defined by

C12[
^y1 ,y2&

A^y1 ,y1&^y2 ,y2&
, ~26!

where the time average in each correlation is taken over
periodT5120. We fix the parameters of the first unit exce
g as b158/3, s1510.0, r1530.0, m151.0, andn151.0.
Different parameter values are assigned to the second
cording to the following three cases:~i! four parameters are
different (s25s11D, r25r12D, m25m120.0625D, n2
5n110.0625D) and the coupling parameter isg52.0, ~ii !
two parameters are different (s25s11D, r25r12D) and
g50.5, and ~iii ! only one parameter is different (r25r1
2D) and g52.0, whereD is a parameter that controls th
extent of the parameter differences.

Figure 4 displays the normalized cross correlationC12
plotted as a function ofD for the above three cases. Th
cross correlation rapidly decreases in case~i! asD increases.
In contrast to this, the two units are highly correlated andC12
remains at unity or only slightly decreases with increasingD
in the other cases~ii ! and ~iii !.

What is a difference in the dynamics between the hig
correlating cases and the uncorrelating case? We now
ceed to investigate what kind of phenomenon causes
highly correlated motions. It is conceivable that generaliz
synchronization~GS! occurs between the two units. GS w
studied for unidirectionally coupled~master-slave! systems
in @17–19# and also for mutually coupled systems, like o
systems, in@20#. A definition of GS can be given as follows

Definition. Let x1 ,x2PRn be state variables of a pair o
dynamical systemsẋ15g1(x1 ,x2) and ẋ25g2(x1 ,x2). The

FIG. 3. Numerical simulation of a communication method w
two channels.~a! Original binary messages.~b! Recovered binary
messages.
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systemsx1 and x2 are said to synchronize in a generaliz
sense if there exists an invertible mapc:Rn

˜Rn, a manifold
M5$(x1 ,x2)ux25c(x1)%, and a subsetB,R2n with M,B,
such that all of the trajectories with initial conditions in bas
B approachM as t˜`.

Roughly speaking, GS is said to occur if one state va
able is uniquely determined by the other via the functio
relationx25c(x1) after the transient motions. The followin
proposition enables us to numerically examine whether s
a functional relation exists between the state variablesX1
5(x1 ,y1 ,z1) andX25(x2 ,y2 ,z2), under the assumption tha
c is continuously differentiable (c andc21PC1).

Proposition 2. Let x1 ,x2PRn be state variables of a pa
of dynamical systemsẋ15g1(x1 ,x2) andẋ25g2(x1 ,x2). The
attractor V of these coupled systems is assumed to
bounded. If there is a function from thex1 space to thex2
space, such thatx25c(x1) for any points onV with c
PC1, then the correlation dimension ofV is equal to that of
its projectionP1(V) to thex1 space~see Appendix B!.

This proposition implies that there is no function fromX1
to X2 @X25c(X1)# with cPC1, if V and P1(V) do not
have the same correlation dimensions, whereV(,R33R3)
and P1(V)(,R3) stand for the attractor of the whole sy
tem and its projection to the phase space of the first u
respectively.

We measure the correlation dimensionsD2(V) and
D2„P1(V)…. Figure 5 displaysD2(V) and D2„P1(V)… for
cases~i!–~iii ! as a function ofD, where the thick and thin
lines refer toD2(V) andD2„P1(V)…, respectively; the line
type distinguishes the three cases as~i! solid line,~ii ! dashed
line, and ~iii ! dashed-dotted line. Some sharp decrease
the correlation dimensions correspond to the windows wh
stable periodic attractors emerge.

Apart from the window, bothD2(V) and D2„P1(V)…
increase asD increases in case~i!. They are apparently dif-
ferent and the difference also increases. In case~ii !, D2(V)
slowly increases and saturates at about 2.5. The appa
difference betweenD2(V) and D2„P1(V)… can also be
found in this case. These results indicate that, for case~i!
and ~ii !, function X25c(X1) does not exist inC1. ~A func-
tion that is not continuously differentiable might exist; w

FIG. 4. Cross correlation versus parameterD: ~i! solid line, ~ii !
dashed line, and~iii ! dashed-dotted line.
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cannot deny this possibility.! In both of the two cases
D2„P2(V)… was also different fromD2(V). This indicates
that a function in the opposite directionX15c8(X2) does not
exist in C1.

In contrast to the previous cases, in case~iii !, V and
P1(V) have the same correlation dimensions for anyD.
This suggests the existence of a continuously differentia
and invertible map. In fact, we can find the continuou
differentiable and invertible map c:(x1 ,y1 ,z1)
°„x1 ,(r2 /r1)y1 ,(r2 /r1)z1… in this case: the second un
becomes identical to the first under the transformationX2
5c(X1). This GS causes nondecreasing in the cross co
lation asD increases in case~iii !.

It is not still clear what kind of phenomenon occurs a
causes the highly correlated motions in case~ii !. On this
point, it is conceivable that there persists a rough corresp
dence between the state variablesX1 andX2 as the paramete
differences increase, instead of an exact one-to-one co
spondence.

Consider points (X1 ,X2) on the attractorV. As a func-
tional relation does not exist, at least inC1, if one state
variable,X1 or X2, is fixed, the other state variable is n
uniquely determined; i.e., for a fixed state variableX̃1 ~or
X̃2), the set W15$X2uX15X̃1 ,(X1 ,X2)PV% ~or W2

5$X1uX25X̃2 ,(X1 ,X2)PV%) contains several points;W1
and W2 consist of a single point when GS occurs. We c
find a ballU1 (U2) that coversW1 (W2) sinceV is bounded.
Let r 1(X̃1) @r 2(X̃2)# be the infimum of the radius of such
ball andr̄ 1 ( r̄ 2) be its average taken with respect toX̃1 (X̃2)
over the attractorV. The averaged radiir̄ 1 and r̄ 2 can be
regarded as parameters that express to what degree the
respondence betweenX1 and X2 is close to a one-to-one
correspondence; the correspondence betweenX1 andX2 be-
comes close to one-to-one whenr̄ 1 andr̄ 2 become small, and
there is a one-to-one correspondence whenr̄ 15 r̄ 250. In
terms of predictability,r̄ 1 ( r̄ 2) gives an average error in pre
dicting X2 (X1) from the knowledge ofX1 (X2) only. The

FIG. 5. Correlation dimensions ofV andP1(V) plotted versus
parameterD. Each thick line refers toD2(V) and each thin line
refers toD2„P1(V)…. The line type distinguishes three cases:~i!
solid line, ~ii ! dashed line, and~iii ! dashed-dotted line.
le

e-

n-

re-

n

cor-

averaged radiir̄ 1 and r̄ 2 may be useful to examine whethe
there persists a rough correspondence betweenX1 and X2.
However, it is impossible to numerically calculate the
Therefore, we define parameters similar tor̄ 1 and r̄ 2 as fol-
lows. Let $(X1

( i ) ,X2
( i ))%, i 51,2, . . . ,m be a time series ob

tained from the trajectory after the transient behavior. Us
this time series, we define the parametersQ1 andQ2 as

Q1,25
1

m (
i 51

m (
j 51

m

H~e2iX1,2
( j )2X1,2

( i ) i !iX2,1
( j )2^X2,1

( j )& i i

(
j 51

m

H~e2iX1,2
( j )2X1,2

( i ) i !

,

~27!

whereH is the Heaviside function

H~x!5H 0 ~x,0!,

1 ~x>0!,
~28!

e is a small positive constant, and̂X2,1
( j )& i is the average

defined by

^X2,1
( j )& i5

(
j 51

m

H~e2iX1,2
( j )2X1,2

( i ) i !X2,1
( j )

(
j 51

m

H~e2iX1,2
( j )2X1,2

( i ) i !

. ~29!

We used the normiXki5uxku1uyku1uzku for the conve-
nience of computation. ParametersQ1 and Q2 measure to
what precision a state variable can be determined when
other state variable is determined within the errore.

We calculated the averageQ5(Q11Q2)/2 as a function
of D for cases~i!–~iii !. Figure 6 displays the results. Th
quantity Q steeply increases with increasingD except the
point of the periodic window in~i!, indicating that the cor-
respondence betweenX1 and X2 comes to break down. In
contrast,Q is almost constant in~iii !. This is consistent with
the existence of GS. The result for case~ii ! is interesting.
The quantityQ gradually increases asD increases up to 2.5

FIG. 6. ParameterQ plotted versusD: ~i! solid line, ~ii ! dashed
line, and~iii ! dashed-dotted line.
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and then it saturates at a small value. This saturation oQ
means that, even for a largeD, the correspondence betwee
X1 andX2 persists to a certain degree. We therefore say
the systems are in anear generalized synchronization~NGS!
state when there exists such a rough correspondence bet
the state variables. It may be concluded that NGS prev
decreases of the cross correlation in case~ii !.

As shown in the above analysis, GS or NGS can occu
coupled systems used for transmitters. Each of them
make the dynamics of different units highly correlate
Therefore, GS and NGS are undesirable for the propo
communication method and should be avoided. We
avoid GS and NGS if we introduce sufficiently large para
eter differences according to an appropriate manner,
case~i!, and subsequently our communication method c
work well as demonstrated by numerical experiments. In
case, it was observed that the attractor of the coupled
tems recovers the high dimensionality and the correla
becomes small. Apart from its relevancy in the communi
tion method, NGS may be an interesting phenomenon
may be worth studying whether NGS occurs in chaotic s
tems with other types of couplings, e.g., diffusive couplin

V. CASCADED SYSTEMS

It is desirable to use a high-dimensional dynamical sys
for each unit in order to make the attacking more difficu
Moreover, the use of high-dimensional unit systems can
expected to lead to smaller cross correlations between di
ent units, avoiding GS and NGS and, therefore, make
possible to transmit a larger number of information sign
simultaneously. A method that enables us to systematic
construct a high-dimensional synchronizing system us
low-dimensional building blocks has been proposed in@4,5#;
the constructed high-dimensional system is calledcascaded
systems.

Connecting the building blocks in series, we can constr
the i th units of the form

dxi j

dt
5f i j „xi j ,si j ~ t !…, i 51,2, . . . ,N, j 50,1, . . . ,K,

~30!

where

s105•••5sN05s5(
i 51

N

aif~xiK ! ~31!

andsi j ( j 51, . . . ,K) is a function ofxi j 21 given by

si j 5hi j ~xi j 21!. ~32!

A configuration of thei th unit is illustrated in Fig. 7. These
N units are coupled by the functions and form the drive
system. The signals is transmitted to a response syste
which consists of the copies of these units

dxi j8

dt
5f i j „xi j8 ,si j8 ~ t !…, ~33!

wheresi08 5s and
at

een
ts

in
an
.
ed
n
-
g.,
n
is
s-
n
-
It
-
.

m
.
e
r-
it
s
lly
g

ct

si j8 5hi j ~xi j 218 !, j 51, . . . ,K. ~34!

We assume that every pair of systemxi j and systemxi j8 sat-
isfies assumption 1, i.e.,ixi j 2xi j8 i˜0 for t˜` if si j 5si j8 .
Then, it is easy to see that all of the systemsxi j8 synchronize
with the corresponding systemsxi j one after another. There
fore, our communication method can be applied provid
that assumption 2 is satisfied. Messages are encoded int
coefficientsai as well.

As an example, we consider the cascaded systems

dxi

dt
52s i~xi2s!,

dyi

dt
5r ixi2m i yi2n ixizi , ~35!

dzi

dt
5n ixiyi2b izi ,

and

dui

dt
52ui2k iv i1si1 ,

~36!
dv i

dt
5k iui2h iv i

3 ,

wheres andsi1 are defined by

s5(
i 51

N

~ai ,01bid!v i , ~37!

and

si15yi sin~vyiyi !1zi sin~vzizi ! ~38!

and s i , r i , m i , n i , b i , k i , h i , vyi , andvzi are positive
parameters. The cascaded systems~35! and ~36! and their
copies can be shown to synchronize by using Lyapun
functions. Synchronization of the first system~35! with its
copy is proven in the same way as described in Sec.
Therefore, we can assumesi15si18 . If si15si18 is assumed,
the equations governing the differenceseui5ui82ui andev i

5v i82v i are

deui

dt
52eui2k iev i ,

FIG. 7. An illustration of a scheme for constructing hig
dimensional unit systems.



ts

o

fo

.
F

e
-
s

ge
th
e

s.

he
a
t
u
te
m
th

that
ing
ay

een
the
es-
ms
me

ike
-
s
ndi-
ns,
ion
can
lues

rn.
led

tion

e
.

ith

PRE 60 1655MULTICHANNEL DIGITAL COMMUNICATIONS BY THE . . .
dev i

dt
5k ieui2h iev i~v i

21v iv i81v i8
2!. ~39!

Using the Lyapunov function

L25
1

2
~eui

2 1ev i
2 !, ~40!

we obtain

dL2

dt
52eui

2 2
1

2
ev i

2 $v i
21v i8

21~v i1v i8!2%<0. ~41!

This shows that the second system~36! and its copy synchro-
nize with each other. It can also be shown that there exis
bounded region inR5N into which any trajectory eventually
enters; we do not describe the proof here.

We show results obtained from numerical experiments
the cascaded systems~35! and ~36! with a sizeN58. For
eachi, the parameter values are randomly chosen in the
lowing ranges:s iP@10,20#, r iP@30,60#, m iP@0.25,1#, n i
P@1,2#, b iP@8/3,17/3#, k iP@3,12#, h iP@0.2,1#, vyi
P@0.5,4#, vziP@0.25,1#, andai ,0P@0.5,1#. The parameterd
is set to 0.1 and the time intervalT for transmitting a single
set of binary messages is set asT520. The signals(t) is
plotted against timet in Fig. 8 and it is apparently chaotic
The encoded binary message sequences are shown in
9~a! and the binary message sequences recovered at th
ceiver are shown in Fig. 9~b!. The first column of the mes
sage sequences is not recovered correctly because the
chronization is still not achieved. The other binary messa
are perfectly recovered. This numerical result shows that
simultaneous transmission of a large number of binary m
sages is possible by using high-dimensional unit system

VI. CONCLUSIONS

A multichannel digital communication method using t
synchronization of globally coupled chaotic systems h
been proposed. One of the advantages of the method is
several binary messages can be transmitted simultaneo
by just one transmitted signal. We presented a model sys
consisting of Lorenz-like units and demonstrated our co
munication method by numerical experiments. Based on

FIG. 8. Transmitted signals(t).
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idea of cascaded systems, we also described a method
systematically constructs a high-dimensional synchroniz
unit system. The use of high-dimensional unit systems m
make communications more secure. In addition, it has b
shown by numerical experiments on a model system that
simultaneous transmission of a larger number of binary m
sages is possible by using high-dimensional unit syste
since the cross correlations between different units beco
smaller.

We investigated the dynamics of the coupled Lorenz-l
systems with a sizeN52, focusing our attention on the cor
relation of the dynamics of the two different units. It wa
shown that GS or NGS occurs under some parameter co
tions and also that they lead to highly correlated motio
which are undesirable for the present communicat
method. However, it was also shown that GS and NGS
be avoided under appropriate choices of the parameter va
and that our communication method can work well in tu
In this case, it was observed that the attractor of the coup
systems recovers the high dimensionality and the correla
becomes small.
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APPENDIX A: PROOF OF PROPOSITION 1

Proof. Consider the Lyapunov function

L5(
i 51

N
1

2 H yi
21S zi2

r i

n i
D 2J . ~A1!

The time derivative ofL is

FIG. 9. Numerical simulation of a communication method w
eight channels.~a! Original binary messages.~b! Recovered binary
messages.



e
e

t

e

th

-

go

e

n-
r-

1656 PRE 60K. YOSHIMURA
dL

dt
5(

i 51

N F2H m i yi
21b i S zi2

r i

2n i
D 2J 1

b i

4 S r i

n i
D 2G .

~A2!

We define the regionD05$(x,y,z)uL̇>2e0 ,e0.0%,R3N,
where x5(x1 , . . . ,xN), y5(y1 , . . . ,yN), and z
5(z1 , . . . ,zN). The regionD0 is bounded with respect to th
y andz coordinates from Eq.~A2!. Therefore, there exists th
supremum ofL in D0 and we letC be the supremum. We
define the region D15$(x,y,z)uL<C1e1 ,e1.0%,R3N,
which is bounded with respect to they and z coordinates
from Eq. ~A1!. Because of this definition, it holds tha

D0,D1, and L̇<2e0 outside ofD1. If an arbitrary trajec-
tory G(t) starts from a point outside ofD1, then the value of
L associated with points on the trajectory must decreas
time goes by andG(t) will enter D1 within a finite timeT1.
Furthermore, all of the trajectories pass inwards through

boundary]D1 sinceL̇<2e0 on ]D1. Therefore, the trajec
tory G(t) once enteringD1 will stay insideD1 for t>T1.

There exists a constant M such that usu
5uh(y1 , . . . ,yN ,z1 , . . . ,zN)u,M in D1 becauseh is a con-
tinuous function ofy andz and is therefore bounded inD1. If
we formally integrate the first equation of Eqs.~23!, then we
have

xi~ t !5xi~T1!e2s i (t2T1)1E
T1

t

e2s i (t2t)gs is~t!dt.

~A3!

Using the fact thatusu,M for t>T1 we have the inequality

uxi~ t !u<uxi~T1!ue2s i (t2T1)1gs iME
T1

t

e2s i (t2t)dt

<uxi~T1!ue2s i (t2T1)1gM . ~A4!

Since the first term on the right hand side decreases and
to zero as time goes by, there existsT2(.T1) such that for
all i, uxi(t)u<11gM for t>T2. If we define D
5D1ù$(x,y,z)uuxi u<11gM ,i 51,2, . . . ,N%, then it holds
that G(t)PD for t>T2 . j

APPENDIX B: PROOF OF PROPOSITION 2

Proof. For simplicity, suppose the normixi5(ux1uq
1•••1uxkuq)1/q in Rk, where q is a positive integer. Let
ys

g

as

e

es

$(x1
( i ) ,x2

( i ))%, i 51,2, . . . ,m be a time series obtained from th
trajectory. The correlation dimension ofV is defined by@21#

D2~V!5 lim
e˜0

logC~e!

loge
, ~B1!

where the correlation integralC(e) is defined by

C~e!5 lim
m˜`

1

m2 (
i , j 51

m

H„e2i~x1
( i ) ,x2

( i )!2~x1
( j ) ,x2

( j )!i…,

~B2!

whereH is the Heaviside function. The correlation dime
sion of P1(V) is defined in the same way through the co
relation integralC1(e) calculated from the time series$x1

( i )%.
The inequalityD2„P1(V)…<D2(V) is trivial. Therefore

we prove the opposite,D2„P1(V)…>D2(V). Consider an
arbitrary pair such thatix1

( i )2x1
( j )i<e. For such a pair, we

have the inequality

i~x1
( i ) ,x2

( i )!2~x1
( j ) ,x2

( j )!i5i„x1
( i ) ,c~x1

( i )!…2„x1
( j ) ,c~x1

( j )!…i

<ix1
( i )2x1

( j )i1ic~x1
( i )!2c~x1

( j )!i .

Since V is assumed to be bounded andcPC1, there is a
constantK such thatic(x1

( i ))2c(x1
( j ))i<Kix1

( i )2x1
( j )i . Then

we have

i~x1
( i ) ,x2

( i )!2~x1
( j ) ,x2

( j )!i<~11K !e[ẽ. ~B3!

From the inequality~B3!, we have

logC1~e!< logC~ ẽ !. ~B4!

If we divide both sides by loge(,0) and take the limite
˜0, we obtain

lim
e˜0

logC1~e!

loge
> lim

e˜0

logC~ ẽ !

loge
5 lim

ẽ˜0

logC~ ẽ !

log ẽ
. ~B5!

This shows thatD2„P1(V)…>D2(V). Hence, we have
D2„P1(V)…5D2(V). j
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